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Abstract

The elastic problem of the contact between an axisymmetric indenter and a general anisotropic (21 independent elas-
tic constants) half space has not been solved explicitly in closed form. Implicit methods to determine the indentation
modulus originate from the work of Willis [J. Mech. Phys. Solids 14 (1966) 163]; and are now available for conical,
parabolic and spherical indenters [Philos. Mag. A 81 (2001) 447; J. Mech. Phys. Solids 51 (2003) 1701]. The particular
case of orthotropy has also been investigated [ASME J. Tribol. 115 (1193) 650, 125 (2003) 223]. This paper proposes an
explicit solution for the indentation moduli of a transversely isotropic medium and a general orthotropic medium under
rigid conical indentation in the three principal material symmetry directions. The half-space Green�s functions are inter-
polated from their exact extreme values, then integrated and finally simplified. The proposed closed form expressions
are in very good agreement with the implicit solution schemes of [Philos. Mag. A 81 (2001) 447; J. Mech. Phys. Solids 51
(2003) 1701].
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent developments of nanoindentation techniques make it possible to measure the elastic properties of
solids in very small volumes, which is particularly useful for thin films, coatings, composites and heteroge-
neous materials. For isotropic solids the solution of frictionless conical indentation was found by Love
(1939), the interpretation is straightforward and has been used extensively (Oliver and Pharr, 1992). If
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simple and explicit relations between stiffness constants and indentation moduli were also available for
anisotropic solids, then a few indentation tests performed in various directions would potentially become
a standard procedure to characterize the elastic properties of general anisotropic materials. A quick deter-
mination of the indentation modulus from known elastic constants would also be useful for many mechan-
ics or materials design aspects.

We restrict our analysis to rigid conical indentation, for which the indentation modulus M is defined
from the unloading branch of an indentation test (Doerner and Nix, 1986; Oliver and Pharr, 1992), using
the fundamental Hertz contact solution, recast in the form (Vlassak and Nix, 1993):
dP
dh

¼ 2ffiffiffi
p

p M
ffiffiffi
A

p
ð1Þ
where P is the applied load, h is the rigid-body displacement of the indenter relative to the half-space, A is
the projected area of contact. For any indentation into a linear elastic half-space, for which the Hertz-type
contact possesses classical self-similarity (see Borodich et al., 2003)

ffiffiffi
A

p
is a linear function of the indenta-

tion depth h, and does not depend on the anisotropy of the material. Swadener and Pharr (2001) recognized
this property for conical indentation, for which (Fig. 1):
ffiffiffi

A
p

¼
ffiffiffi
p

p
hc tanðaÞ ¼

2ffiffiffi
p

p tanðaÞh ð2Þ
where a is the cone half-angle and hc = (2/p)h the contact depth. In turn, for rigid indenters, the indentation
modulus M in (1) is a function of only the elastic constants of the indented half-space. M is not a material
property but rather a snapshot of the solid stiffness. For instance, in the isotropic case, M reduces to the
plane-stress elastic modulus,
M ¼ E
1� m2

¼ C2
1111 � C2

1122

C1111

ð3Þ
where E is the Young�s modulus, m the Poisson�s ratio; C1111 and C1122 are the forth order stiffness tensor
coefficients of the half-space. It is readily understood that the link between the indentation modulus and the
elastic constants of a general anisotropic material is far more complicated than in the isotropic case. Closed
form solutions, such as (3) are only available for some particular cases, such as the Elliot–Hanson solution
(Elliot, 1949; Hanson, 1992) for conical indentation of a transversely isotropic half-space in the axis of sym-
metry. Much of the recent contributions to the analysis of the Hertzian contact for anisotropic solids can be
traced back to the work of Willis (1966), who reduced the problem to the evaluation of contour integrals for
parabolic indenters. Vlassak and Nix (1994) simplified the solution using the surface Green�s functions
determined by Barnett and Lothe (1975) and provided implicit solution schemes for other indenter shapes.
Fig. 1. Indentation and contact depths.
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To our knowledge, the most refined solution schemes for general anisotropic materials are those proposed
by Swadener and Pharr (2001) for conical and parabolic indenters and by Vlassak et al. (2003) for conical
and spherical indenters . Both solution schemes involve computational demanding operations even in their
approximated versions. Ovaert (1993) and more recently Shi et al. (2003) investigated the particular cases of
transverse isotropy and orthotropy and proposed an implicit resolution methods for ellipsoidal indenters. It
is the focus of this paper to develop easy implementable explicit expressions for orthotropic materials in-
dented in the axes of symmetry by conical indenters.

We first give the explicit expression for the indentation modulus of transversely isotropic materials in-
dented in the axis of symmetry, based on the Elliot–Hanson solution. This solution also motivates the
extension to indentation normal to the axis of symmetry, based on a sinusoidal approximation of the
surface Green�s function. Instead of keeping the first two terms of the Fourier transform as suggested by
Vlassak et al. (2003), we interpolate the Green�s function from some extreme values that are known explic-
itly. This method does not require the entire expression of the function and thus leads to explicit expressions
of the indentation modulus. We finally extend the approach to orthotropic materials, and compare the re-
sults for various materials with the results obtained by Swadener and Pharr (2001) and Vlassak et al. (2003).
2. Indentation modulus of a transversely isotropic solid

Let direction x3 be normal to the planes of isotropy; directions x1 and x2 be parallel to the planes of
isotropy so that the resulting coordinate system S is a right-hand cartesian one, with the first indented point
as origin O.

2.1. Indentation in the axis of symmetry

For transversely isotropic materials, the problem of elastic conical indentation in direction x3, i.e. when
the plane of isotropy is parallel to the half space surface, has been solved analytically (Elliot, 1949; Hanson,
1992). The problem is axisymmetric, the projected area of contact in the plane (x1,x2) is circular (Fig. 2).
The Elliot–Hanson solution reads:
P ¼ 2

p2H
h2 tanðaÞ ð4Þ
H is a constant that depends on the material stiffness constants:
H ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11

C2
31 � C2

13

1

C44

þ 2

C31 þ C13

� �s
ð5Þ
Fig. 2. Indentation in the solid�s axis of symmetry.
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where we use the reduced notations:
C11 ¼ C1111

C13 ¼ C1133 ¼ C3311

C44 ¼ C2323 ¼ C1313

C31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C33

p
> C13; with C33 ¼ C3333

ð6Þ
It is interesting to note that the solution does only depend on four of the five elastic constants of a trans-
versely isotropic material (C11,C33,C44,C13). The fifth independent constant C12 = C1122 = C1111�2C1212

does not appear in the expression of H. We will see that this observation is restricted to the perfect axisym-
metric case, for which the factor H turns out to be the constant in the Green�s function, i.e. the surface dis-
placement induced by a concentrated unit load:
gðrÞ ¼ H
r

ð7Þ
In general, the Green�s function depends on both polar coordinates (r,h) defined on the indented surface
and centered at the load point; but for the perfect material axisymmetric case it does not depend on h.

Finally, using (4) and (2) in (1) yields the following explicit expression of the indentation modulus M3 in
the axis of symmetry (direction x3):
M3 ¼
1

pH
ð8Þ
or equivalently using (5):
M3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

31 � C2
13

C11

1

C44

þ 2

C31 þ C13

� ��1
s

ð9Þ
2.2. Indentation normal to the axis of symmetry

When the half-space�s surface is orthogonal to the material�s planes of isotropy, the area of contact is not
circular, and the problem is no longer axisymmetric (Fig. 3).

The load versus displacement relation in such a contact problem can be found in two steps:

1. Finding the displacement field corresponding to a concentrated load; that is the Green�s function
(Vlassak and Nix, 1994):
gðyÞ ¼ 1

8p2jyj akB�1
km

y

jyj

� �
am

� �
¼ gðr; hÞ ¼ HðhÞ

r
ð10Þ
Fig. 3. Indentation orthogonal to the solid�s axis of symmetry.
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where y is the position vector of Q relative to the load point P; (r,h) are polar coordinates of Q (h = 0
along direction x2); a1, a2, a3 are the cosines of the direction normal to the indented surface; B is a sec-
ond order tensor defined by Barnett and Lothe (1975):

BjsðtÞ ¼ BsjðtÞ ¼
1

8 � p2

Z 2p

0

ððmmÞjs � ðmnÞjkðnnÞ
�1
kr ðnmÞrsÞd/ ð11Þ

where (ab)jk = aiCijklbm (with the summation of repeated indices); t is the normalized form of y; (m,n, t)
forms a right hand cartesian system, and / is the angle between vector m and direction x1 (Fig. 4). And
finally, g(r,h) is the surface Green�s function, homogenous in r�1.

2. Integrating the Green�s function to find the displacement field resulting from an assumed pressure dis-
tribution under the indenter (Swadener and Pharr, 2001; Willis, 1966), and verifying that result matches
with the boundary conditions. 1

2.2.1. Green�s function approximation
In our particular case of transverse isotropy, the indentation axis (x1) belongs to two planes of symmetry

(Fig. 3): (x1,x3) is orthogonal to the planes of isotropy, and (x1,x2) is parallel to them. In this case, an
evaluation of (10) for (a1,a2,a3) = (1,0,0) yields the exact values of the Green�s function g in the x2-
direction (h = 0), and in the x3-direction (h = p/2):
1 A
(1975).
Hðh ¼ 0Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33

C2
31 � C2

13

1

C44

þ 2

C31 þ C13

� �s
¼ H 2 ð12Þ

H h ¼ p
2

� �
¼ 1

p
C11

C2
11 � C2

12

¼ H 3 ð13Þ
It is interesting to note, from a comparison of (5) and (12), that H 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33=C11

p
H ; while H3 turns out to be

the Green�s function constant for an isotropic material with stiffness constants C11 and C12.
Furthermore, since the Green�s function is even and p-periodic by symmetry, H2 and H3 are extreme

values of H(h). Therefore, it seems appropriate to consider a first order approximation eH ðhÞ that interpo-
lates the Green�s function gðr; hÞ � eH ðhÞ=r so that eH ðh ¼ 0Þ ¼ H 2 and eH ðh ¼ p

2
Þ ¼ H 3:
n original alternative to the assumption of a pressure distribution was proposed by Vlassak et al. (2003), using Barber�s theorem
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eH ðhÞ ¼ H 0 þ Hc1 cosð2hÞ ð14Þ

where
H 0 ¼
H 2 þ H 3

2
and Hc1 ¼

H 2 � H 3

2
ð15Þ
The proposition of interpolating the Green�s function between two extreme values is restricted to the geo-
metrical configuration of indentation in the principal material axes. A more general first order approxima-
tion is obtained by performing a Fourier transform of H(h), and keeping only the first terms of the
sinusoidal decomposition (see Vlassak et al., 2003, Appendix A). This approximation gives a slightly dif-
ferent sine function whose coefficients must be evaluated numerically; whereas H0, Hc1 in our solution pro-
cedure are found analytically. In return, since the first order approximation from Fourier transform was
found to be very accurate for many materials, it should also be the case with our explicit evaluation of
the Green�s function.

2.2.2. Integration over an assumed pressure distribution
It is generally assumed that the projected contact area is elliptical for conical indentation of general

anisotropic materials (Swadener and Pharr, 2001; Vlassak et al., 2003). By symmetry, the axes of the ellip-
tical contact area must coincide with x2 and x3. If a2 and a3 are the ellipse dimensions in the respective

directions x2 and x3, then the ellipse eccentricity is e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

a3

� �2
r

if a2 < a3, and e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a3

a2

� �2
r

other-

wise. We assume that the pressure field p(y2,y3) at point P of coordinates (y2,y3) has the form proposed
by Swadener and Pharr (2001):
pðy2; y3Þ ¼ p0cosh
�1 y22

a22
þ y23
a23

� ��1=2

ð16Þ
The displacement in any point Q(z2,z3) situated on the projected contact surface is:
u1ðz2; z3Þ ¼
Z Z

S
pðy2; y3Þgðz2 � y2; z3 � y3Þdy2 dy3 ð17Þ
The indentation depth h is equal to the displacement u1 at the cone tip. It can be expressed in (17) as a func-
tion of the load P = pa2a3p0 and identified with (1) and (2), so that M1 is given by (Swadener and Pharr,
2001; Vlassak et al., 2003):
M1 ¼
1

aðe;HÞð1� eÞ1=4
ð18Þ
where:
aðe;HÞ ¼
Z p

0

gðhþHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2cos2ðhÞ

p dh ð19Þ
H is the angle between the major axis of the contact ellipse and the direction x2 or h = 0: by symmetry
H = 0 if H2 < H3, H = p/2 otherwise.

The solution of (18) and (19) requires as input the eccentricity. For our proposed Green�s function
approximation (14), integration of (17) with (16) yields the displacement field u1, that is subjected to the
condition of axisymmetry imposed by the contact of the rigid indenter. Following faithfully the method
described by Swadener and Pharr (2001) and Vlassak et al. (2003, Appendix A), we obtain an explicit
expression of the eccentricity:
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e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jHc1j

H 0 þ jHc1j

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H 2

H 3

r
; if H 2 < H 3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H 3

H 2

r
; else

� 	
ð20Þ
or equivalently,
a2
a3

¼
ffiffiffiffiffiffi
H 3

H 2

r
ð21Þ
Finally, substituting the eccentricity (20) in (18) and (19), we obtain:
M1 ¼
1

2EðeÞH 3=4
2 H 1=4

3

ð22Þ
where E(e) is the complete elliptic integral of the second kind. It is useful to rewrite (22) in the form:
M1 ¼ WðeÞ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
H 2H 3

p ; where WðeÞ ¼ p
ð1� e2Þ1=4

2EðeÞ ð23Þ
We note that 0.99 6 W(e) 6 1 if e 6 0.6, which corresponds to an ellipse axis ratio smaller that 1.25.
Hence, using W(e) � 1 in (23) simplifies the expression of the indentation modulus normal to the axis of
symmetry:
M1 �
1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
H 2H 3

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M12M13

p
ð24Þ
where:

• M13 appears as the indentation modulus obtained by indentation in an isotropic solid, for which the elas-
tic properties in direction x3 coincide with the elastic properties in direction x1 and x2:
M13 ¼
1

pH 3

¼ C2
11 � C2

12

C11

ð25Þ
• M12 would be the indentation modulus in direction x1, if the elastic properties in direction x2 had been
set equal to the properties in direction x3:
M12 ¼
1

pH 2

¼
ffiffiffiffiffiffiffi
C11

C33

r
M3 ð26Þ
3. Indentation modulus of an orthotropic solid

If we consider the same cartesian coordinates system, such that the orthotropic solid�s three planes of
symmetry are along (x1,x2), (x1,x3) and (x2,x3), the indentation moduli in the directions x1, x2 and x3
can be approximated using the same method. For example, in the case of indentation in direction x1 of
surface (x2,x3), there are two perpendicular planes of symmetry, (x1,x2) and (x1,x3).

For an orthotropic solid, we consider the nine independent stiffness constants of the material:
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C11 ¼ C1111 or C21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111C2222

p
;

C33 ¼ C3333 or C31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1111C3333

p
;

C22 ¼ C2222 or C32 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2222C3333

p
;

C12 ¼ C1122 ¼ C2211;

C13 ¼ C1133 ¼ C3311;

C23 ¼ C2233 ¼ C3322;

C44 ¼ C2323

C55 ¼ C1313

C66 ¼ C1212

ð27Þ
Along similar lines of arguments developed before, we obtain:
M1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M12M13

p
M2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M21M23

p
M3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M31M32

p ð28Þ
where:
M21 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

21 � C2
12

C11

1

C66

þ 2

C21 þ C12

� ��1
s

M31 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

31 � C2
13

C11

1

C55

þ 2

C31 þ C13

� ��1
s

ð29Þ

M32 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

32 � C2
23

C22

1

C44

þ 2

C32 þ C23

� ��1
s

and
M12 ¼ M21

ffiffiffiffiffiffiffi
C11

C22

r

M13 ¼ M31

ffiffiffiffiffiffiffi
C11

C33

r
ð30Þ

M23 ¼ M32

ffiffiffiffiffiffiffi
C22

C33

r

4. Discussion

The presented approximations were tested on several transversely isotropic and orthotropic materials.
The results were compared with the �exact� values obtained by the implicit methods of Swadener and Pharr
(2001), and Vlassak et al. (2003). By way of example, we consider an hexagonal crystal of zinc that can be
modeled as transversely isotropic. Using the elastic coefficients, C1111 = C2222 = 164, C3333 = 62.93,
C2323 = C1313 = 39, C1122 = 36, C2233 = C1133 = 52 (GPa), our approximated indentation modulus in the
direction parallel to the hexagonal planes is M1x = 132.2 GPa, which is very close to the one evaluated
using Vlassak et al.�s solution: M(x1) = 133.4 GPa. For this particular case, Fig. 5 represents the �exact�
surface Green�s function computed from Vlassak et al. (2003), and two first order approximations: the
Fourier transform approximation suggested by Vlassak et al. (2003), and our Green�s function interpola-
tion approximation (14). Both approximations are close to the target function. By construction, our explicit
approximation is exact for h = 0 and h = p/2. By way of example of an orthotropic material, we determine
the indentation modulus for the human tibial cortical bones tested by Swadener et al. (2001), using the con-



Fig. 5. Green�s function of zinc�s surface (x2,x3) in 1/GPa (solid line). Our first order approximation (dashed). The equivalent one
from a Fourier transform (dotted). Theta varies from 0� to 90�.
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stants C1111 = 19.5, C2222 = 20.1, C3333 = 30.9, C2323 = 5.72, C1313 = 5.17, C1212 = 4.05, C2233 = C1133 =
12.5, C12 = 11.4 (GPa). Our approximation (28) yields:
M1 ¼ 14:0659 GPa;M2 ¼ 14:6090 GPa;M3 ¼ 19:6784 GPa ð31Þ

which cannot be distinguished from the values given by Swadener and Pharr: M(x1) = 14 GPa,
M(x2) = 14.6 GPa, M(x3) = 19.7 GPa.

The high accuracy of the relative simple closed form expressions seems to be due to a combination of two
facts: (1) a first order approximation of the Green�s function appears to be highly relevant for many mate-
rials; and (2) the eccentricities encountered with many materials are rather small. On the other hand, the
proposed solutions only apply to the three principal material directions. The full back-analysis from inden-
tation tests of the five (respectively nine) independent elastic constants for transversally isotropic (respec-
tively orthotropic) materials will require three (respectively six) further solutions in inclined directions.
However, the solutions in the principal material directions have the premise to display the highest contrast
in indentation stiffness. The additional information could also be provided by assumptions about Poisson�s
ratios and shear moduli for example.

Finally, determining explicit solutions of indentation moduli from known elastic constants can be useful
for many mechanics or materials design aspects.
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